EXPLORING SMARTWATCH-BASED DEEP LEARNING APPROACHES TO SUPPORT SOUND AWARENESS FOR DEAF AND HARD OF HEARING USERS

Dhruv Jain, Hung Ngo, Pratyush Patel, Steven Goodman, Leah Findlater, Jon Froehlich

ASSETS 2020 Paper

Sound recognition is at the heart of many modern Al systems.

Our past work examined sound recognition to support d/Deaf and hard of hearing (DHH) users in the home.

However, the sensing and classification was done on non-portable devices.

Jain et al., HomeSound, CHI 2020

Recent iOS 14 update introduced sound recognition in consumer smartphones.

But this release is closed-source and the implementation details are unknown.

Two Studies

Study 1 A quantitative examination of four lightweight deep-learning models to classify sounds.

Study 2 A **qualitative** evaluation of a smartwatch-based sound awareness app with 8 DHH participants.

A recent study with 201 DHH users showed that smartwatch was the most preferred device for sound feedback.

Two Studies

Study 1 A quantitative examination of four lightweight deep-learning models to classify sounds.

Study 2 A **qualitative** evaluation of a smartwatch-based sound awareness app with 8 DHH participants.

TWO STUDIES

Study 1 A quantitative examination of four lightweight deep-learning models to classify sounds.

Study 1

Goal

• Performance evaluation of four deep learning sound classification models across four architectures.

Models

- Three recently released TensorFlow-Lite models: MobileNet (3.4MB), Inception (41MB), ResNet-Lite (178.3MB) and a quantized version of our model: VGG-Lite (281.8MB).
- Also, a comparison with state-of-the-art full-VGG model (845.5MB) running on a laptop.

Architectures

- Watch-only, watch+phone, watch+cloud, and watch+phone+cloud.
- A commercially available smartwatch (Tickwatch Pro) and smartphone (Honor 7x) were used.

STUDY 1 FINDINGS

Models

Architectures

Study 1 Findings

Models

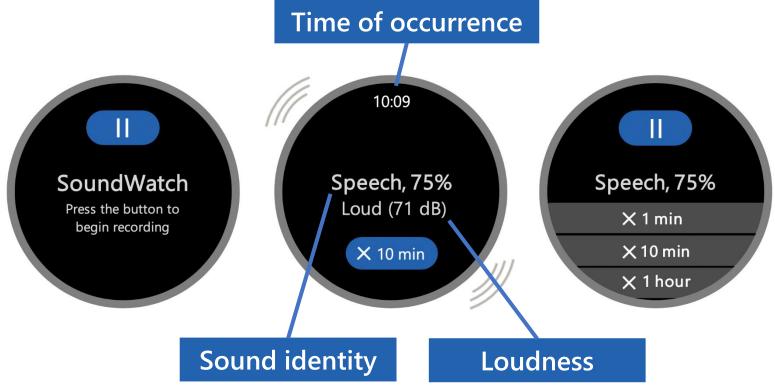
- The best classification model (VGG-lite) had similar accuracy as the state-of-the-art for non-portable (VGG) but required substantially less memory (~1/3rd).
- Accuracy of best model was 81.2% (SD=5.8%) for 20 sound classes and 97.6% (SD=1.7%) for three high-priority sounds, when evaluated on our dataset of field sound recordings.
- Among our four models, we also observed a strict accuracy-latency trade-off: the most accurate model was also the slowest (avg. acc=81.2%, avg. latency=3.4s).

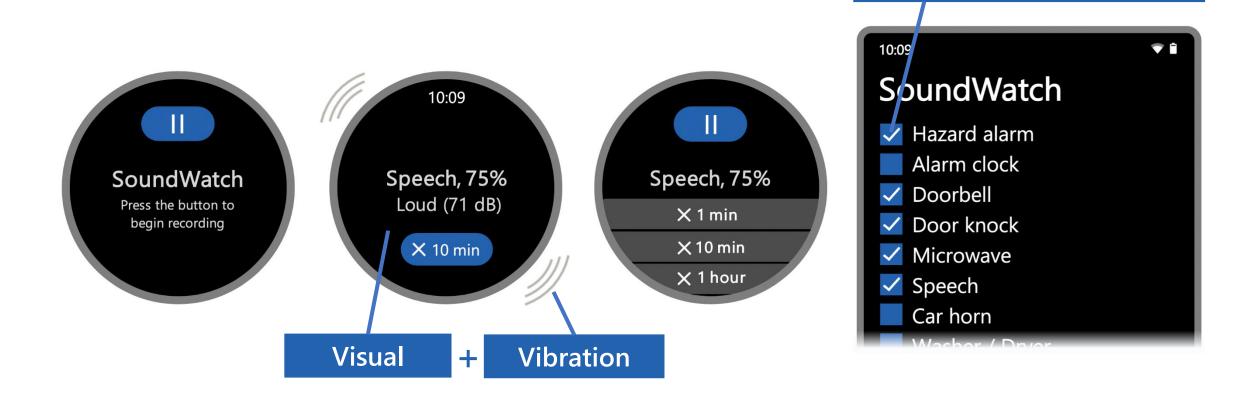
Study 1 Findings

Architectures

 The two phone-based architectures (*watch+phone*, *watch+phone+cloud*) **outperformed the watch-centric designs** (*watch-only*, *watch+cloud*) in terms of CPU, memory, battery usage, and end-to-end latency.

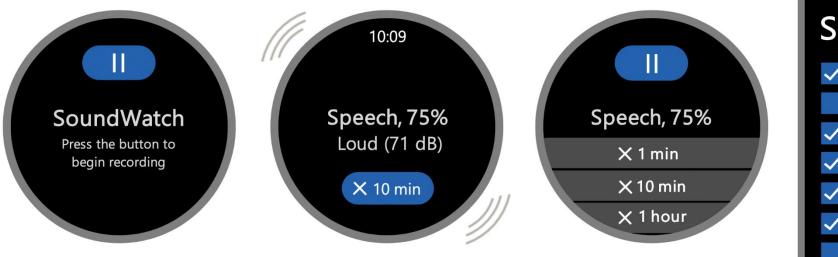
To complement these quantitative findings, we built and conducted a **qualitative lab**evaluation of a smartwatch-based sound awareness app, called **SoundWatch**.





Customizable sound alerts

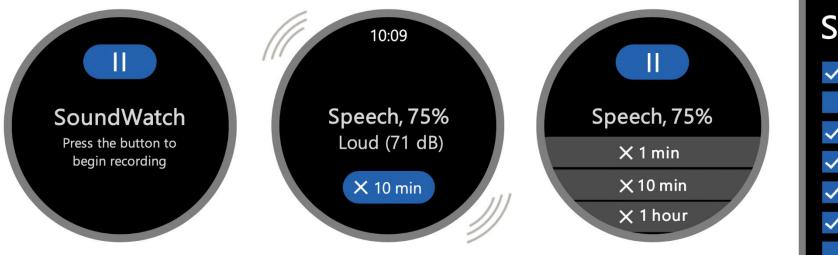
Support for four architectures with deep-learning model running on either watch (watch-only), phone (watch+phone), or cloud (watch+cloud, watch+phone+cloud).



10:09 Image: Constraint of the second se

Wachar / Druar

SoundWatch processes the sound locally on the watch or phone and, in the case of the cloud-based architectures, only uploads non-reconstructable mel-spectrogram features.



10:09 SoundWatch Hazard alarm Alarm clock Doorbell Door knock Microwave Speech Car horn

Wachar / Druar

STUDY 2

Goal

 Gather user feedback on our system results and the SoundWatch app.

Participants

o Eight DHH participants (3 women, 3 men, 2 nonbinary).

Method

- Campus walkthrough with the SoundWatch app in three contexts: a lounge, a lab, and a bus stop.
- Post-trial interview on the experience and other technical considerations—*e.g.*, desired accuracy-latency tradeoff, thoughts on the four SoundWatch architectures.

Study 2 Findings

All participants generally **appreciated SoundWatch across all three contexts**, reaffirming past sound awareness work.

Study 2 Findings

However, **misclassifications were concerning**, especially outdoors due to background noise.

 \times 10 mir

17 Open

Study 2 Findings

Participants wanted **minimum delay** for urgent sounds (*e.g.*, car honk, water running) and **maximum accuracy** for non-urgent sounds (*e.g.*, speech, background noise).

SoundWatch • Now
 Nater Running, 83%
 (Loud, 113 dB)

× 10 mir

7 Oper

STUDY 2 FINDINGS

Watch+phone was the preferred architecture because compared to the cloud-based design, it was **more private and versatile** and compared to the watch-only, it was **faster**.

Reflection

How well does a **smartwatch-based sound classification** tool need to perform?

Needs further study...

RECOMMENDATIONS

Explore usage in the field. But this introduces ethical and safety concerns. Increasing transparency may help.

- **2** Explore showing multiple "possible" sounds.
- **2** Explore end-user customization.
- 4 Explore end-user interactive training of the model—e.g., Wu, CHI '20. But this may be tedious if the sound is inaccessible to DHH users.

Smartwatch offers a myriad of possibilities for DHH users and beyond.

Please refer to the paper for more interesting ideas on **smartwatch + sound** feedback.